Recent Progress in CdTe and CdZnTe Detectors
نویسندگان
چکیده
Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) have been regarded as promising semiconductor materials for hard X-ray and γray detection. The high atomic number of the materials (ZCd =48, ZTe=52) gives a high quantum efficiency in comparison with Si. The large band-gap energy (Eg ∼ 1.5 eV) allows us to operate the detector at room temperature. However, a considerable amount of charge loss in these detectors produces a reduced energy resolution. This problem arises due to the low mobility and short lifetime of holes. Recently, significant improvements have been achieved to improve the spectral properties based on the advances in the production of crystals and in the design of electrodes. In this overview talk, we summarize (1) advantages and disadvantages of CdTe and CdZnTe semiconductor detectors and (2) technique for improving energy resolution and photopeak efficiencies. Applications of these imaging detectors in future hard X-ray and gamma-ray astronomy missions are briefly discussed. Keywords—CdTe, CdZnTe, CZT, gamma-ray, Pixel Detector.
منابع مشابه
Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications
Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for th...
متن کاملDirect Conversion CdZnTe and CdTe Detectors for Digital Mammography
Hybrid CdZnTe and CdTe pixel detector arrays with 50 50 micron pixel sizes that convert x-rays directly into charge signals are under development at NOVA for applications to digital mammography. CdZnTe and CdTe have superior x-ray quantum efficiency compared to either emulsion-based film, phosphor-based detectors or other low-Z, solid-state detectors such as silicon. In this paper, latest resul...
متن کاملA Method to Improve Spectral Resolution in Planar Semiconductor Gamma-Ray Detectors DISCLAIMER
This paper describes an empirically derived algorithm to compensate for charge trapping in CdTe, CdZnTe, and other planar semiconductor detectors. The method is demonstrated to be an improvement over available systems and application to experimental data is shown.
متن کاملNew Perspectives of X-ray Techniques for Explosive Detection Based on CdTe/CdZnTe Spectrometric Detectors
Conventional explosive detection systems (EDS) based on X-ray technologies are using dual-energy radiography; they provide only a crude material characterization. Recently emerged semiconductors based X-ray detectors offer new capabilities in energy discrimination. This study is aiming at evaluating their interest for EDS. LETI-LDET laboratory has developed several pixellated CdTe/CZT detectors...
متن کاملDynamics of native oxide growth on CdTe and CdZnTe X-ray and gamma-ray detectors
We studied the growth of the surface oxide layer on four different CdTe and CdZnTe X-ray and gamma-ray detector-grade samples using spectroscopic ellipsometry. We observed gradual oxidization of CdTe and CdZnTe after chemical etching in bromine solutions. From X-ray photoelectron spectroscopy measurements, we found that the oxide consists only of oxygen bound to tellurium. We applied a refined ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001